The first question any interviewer interviewing you for ML would ask is "how would you begin your analysis once you have the problem statement defined". The first things that a Data Scientist would want to do is define the class of the problem that is given to us.
There are common classes of problem in Machine Learning. The problem classes below are archetypes for most of the problems we refer to when we are doing Machine Learning.
- Classification: Data is labelled meaning it is assigned a class, for example spam/non-spam or fraud/non-fraud. The decision being modelled is to assign labels to new unlabelled pieces of data. This can be thought of as a discrimination problem, modelling the differences or similarities between groups.
- Regression: Data is labelled with a real value (think floating point) rather then a label. Examples that are easy to understand are time series data like the price of a stock over time, The decision being modelled is what value to predict for new unpredicted data.
- Clustering: Data is not labelled, but can be divided into groups based on similarity and other measures of natural structure in the data. An example from the above list would be organising pictures by faces without names, where the human user has to assign names to groups, like iPhoto on the Mac.
- Rule Extraction: Data is used as the basis for the extraction of propositional rules (antecedent/consequent aka if-then). Such rules may, but are typically not directed, meaning that the methods discover statistically supportable relationships between attributes in the data, not necessarily involving something that is being predicted. An example is the discovery of the relationship between the purchase of beer and diapers (this is data mining folk-law, true or not, it’s illustrative of the desire and opportunity).
No comments:
Post a Comment